数据中心芯片,更香了!
在最近一个季度,英伟达、博通、AMD、英特尔、Marvell、SK海力士、美光和三星的数据中心相关出货量超过了 2200 亿美元的年出货量(不包括电源芯片)。
随着 LLM 的快速扩展,预计到 2030 年数据中心的半导体支出将超过 5000 亿美元,占整个半导体行业的 50% 以上。
那么,哪一系列芯片又会随着数据中心的走红同步受益?在此之前,先来了解一下数据中心。
数据中心可以分为IDC(Internet Data Center,互联网数据中心)、EDC(Enterprise Data Center,企业数据中心)、NSC(National Supercomputing Center,国家超级计算中心)。其中,IDC是电信业务经营者利用已有的互联网通信线路、带宽资源,建立标准化的电信专业级机房环境,通过互联网向客户提供服务器托管、租用以及相关增值等方面的全方位服务。
EDC是指由企业或机构构建并所有,服务于企业或机构自身业务的数据中心,是一个企业数据运算、存储和交换的核心计算环境,它为企业、客户及合作伙伴提供数据处理、数据访问等信息,应用支持服务。NSC是指由国家兴建、部署有千万亿次高效能计算机的超级计算中心。根据规模容量不同,数据中心可以分为超大型数据中心、大型数据中心和中小型数据中心。
超大型数据中心:规模大于10000个标准机架的数据中心,用于为全球范围内的大型企业和互联网服务提供商提供高容量和高性能的数据存储和处理服务,为企业和科研机构提供数据挖掘、机器学习和人工智能等领域的支持。
大型数据中心:规模介于3000~10000个标准机架的数据中心,用于为大型企业或者互联网公司提供数据存储和处理服务。
中小型数据中心:规模小于3000个标准机架的数据中心,用于为中小型企业提供数据存储和处理服务。
数据中心建设规模的逐步扩大,自然对芯片的需求水涨船高,以下一系列芯片市场也迎来颇多红利。
数据显示,在2030年数据中心半导体支出中,GPU/AI加速器占到60%;AI扩展网络芯片占到15%;CPU(x86和ARM)占到10%;存储芯片占到10%;电源、BMC等占到5%。
其中,GPU/AI 加速器是算力核心,主要用于 AI 训练与推理、高性能计算,与 CPU 形成异构计算,提升算力效率。
AI 扩展网络芯片负责构建高带宽低延迟网络,实现 GPU 间高速互联,卸载 CPU 网络任务,优化 AI 流量传输。
CPU芯片作为控制中枢,管理系统资源、调度任务,处理通用计算和协议事务,并协调异构计算。
HBM等存储芯片与 GPU/AI 加速器配合,支撑高性能计算场景,为大规模数据处理提供高速存储与读取能力。
电源、BMC 等芯片,用于保障数据中心设备供电稳定和远程监控管理,确保系统可靠运行。
同样的,如今正有着越来越多的芯片公司押注这一市场。
推荐文章
-
作为全球第一大光刻机厂商,也是唯一掌握EUV光刻机技术的厂商,理论上而言,ASML的日子是相当滋润的。 毕竟EUV光刻机是制造7nm以下芯片必备机器,所以全球的顶尖芯片厂,都要抢ASML的EUV光刻机,看它的脸色行事,它卡着全球芯片厂商的脖子啊。 但是,从最近的情况来看,这家理论上风光无限的光刻机巨头,日子却也没有想象中的好过,原因就是它们的“印钞机”EUV光刻机,似乎失灵了。 我们知道,ASML的光刻机,是与芯片工艺应对的,KrF、ArF、ArFi、EUV等等,对应着不同的工艺。制造什么样的芯片,就要买哪一种光刻机。 而全球的芯片工艺不断前进,所以芯片厂商们,也要不断的买新光刻机,不停的更新换代,ASML为此赚的盆满钵满的。 但是进入到EUV之后,这种更新换代就难了,一方面是研发最新款的EUV光刻机,实在是太难,成本太高了。二是研发出来,也因为成本太高,芯片厂商们不愿意买,卖不掉啊。 先说研发难的问题,之前的EUV光刻机,其NA=0.33也就是数值孔径是0.33,而新一代叫做 High NA EUV,其...
-
近日,一些媒体报道了英国部署电子束光刻机相关的新闻,并号称打破ASML的EUV技术垄断。部分报道甚至号称这是全球第二台电子束光刻机,能绕过ASML。实际上当前没有任何信息表面该电子束曝光机可以用于5nm制程的芯片量产的光刻环节。在这些媒体的报道中,英国似乎已经拳打ASML,脚踢EUV了。 那事实真的如此吗?实际情况到底如何呢? 英国部署全球第二台200kV电子束光刻设备 实际上,英国南安普敦大学宣布的是,成功开设了日本以外首个分辨率达5纳米以下的尖端电子束光刻(EBL)中心,可以制造下一代半导体芯片。这也是全球第二个,欧洲首个此类电子束光刻中心。 据介绍,该电子束光刻中心采用了日本JEOL的加速电压直写电子束光刻(EBL)系统,这也是全球第二台200kV系统(JEOL JBX-8100 G3)(第一台在日本),其可以在200毫米晶圆上实现低于5纳米级精细结构的分辨率处理。这可以在厚至10微米的光刻胶中实现,且侧壁几乎垂直,可用于开发电子和光子学领域研究芯片中的新结构。JEOL的第二代EBL设备——100kV JEOL...
-
沉睡70年的苏联技术,竟被华为唤醒?这一次,芯片行业又要变天了么? 上世纪50年代,苏联科学家曾尝试用三进制(0、1、2)替代传统二进制设计计算机,但因技术局限与历史原因,最终被二进制体系碾压。 然而,华为2025年3月公布的一项专利(CN119652311A),让这一沉寂半个多世纪的芯片技术涅槃重生。 华为的三进制专利早在2023年9月便申请,在今年3月才公之于众。 相比传统计算机基于二进制(以电路的通断(0/1)构建数字世界),华为的三进制设计引入了“无电荷”或“中间态”,数学上可表达为-1、0、1的对称体系。 单从逻辑复杂度看,三进制单变量函数从二进制的16种跃升至27种,这意味着相同算力任务下,三进制芯片的晶体管数量可减少30%,能耗仅为传统芯片的33%。 简而言之其核心在于实现了三进制逻辑值的“加减1”操作,并通过优化电路设计,将理论转化为可量产的芯片技术。 此前韩国蔚山科学技术大学团队曾在2019年验证三进制半导体的节能潜力,三星亦跟进研发,但华为此次专利首次将三进制逻辑门与计算电路、芯片封装全链路打通,为商业化铺平道路。 传统二...